
The Trade-Off Between Accuracy and Precision in Latent Variable Models
of Mediation Processes

Alison Ledgerwood
University of California, Davis

Patrick E. Shrout
New York University

Social psychologists place high importance on understanding mechanisms and frequently employ mediation
analyses to shed light on the process underlying an effect. Such analyses can be conducted with observed
variables (e.g., a typical regression approach) or latent variables (e.g., a structural equation modeling
approach), and choosing between these methods can be a more complex and consequential decision than
researchers often realize. The present article adds to the literature on mediation by examining the relative
trade-off between accuracy and precision in latent versus observed variable modeling. Whereas past work has
shown that latent variable models tend to produce more accurate estimates, we demonstrate that this increase
in accuracy comes at the cost of increased standard errors and reduced power, and examine this relative
trade-off both theoretically and empirically in a typical 3-variable mediation model across varying levels of
effect size and reliability. We discuss implications for social psychologists seeking to uncover mediating
variables and provide 3 practical recommendations for maximizing both accuracy and precision in mediation
analyses.
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Understanding mechanisms and process is a central focus of
social psychologists, and thus few of us are satisfied with a simple
empirical claim that variation in some independent variable X is
related to variation in some outcome variable Y, even if X is
experimentally manipulated. Instead, we often ask, What is the
underlying mechanism? The classic tools of mediation analysis
proposed by Baron and Kenny (1986) have seemed to provide a
good method for finding an answer, but choosing the most appro-
priate method for testing mediation can be a more complex and
consequential decision than researchers often realize. Increasingly,
the complexity of the assumptions and threats to validity of infer-
ences based on the Baron and Kenny steps have become clear to
substantive researchers (see Bullock, Green, & Ha, 2010). In this
article, we add to that cautionary literature and provide tools for
moving forward in the quest for studying mechanisms.

Baron and Kenny’s (1986) well-known approach asks the re-
searcher to identify and measure an intervening variable, M, which
appears to be a consequence of X and a causal component of Y. For
example, Hodson and Costello (2007) used mediation analyses to
examine the relation between interpersonal disgust (X) and atti-
tudes toward immigrants (Y). They hypothesized that interpersonal
disgust would predict social dominance orientation (M), which

would in turn predict more negative attitudes toward immigrants.
Social psychologists have used such mediation analyses to eluci-
date underlying processes with respect to a wide range of vari-
ables, examining potential mechanisms for observed relations be-
tween attitude commitment and selective judgment, construal level
and negotiation outcomes, cultural values and socially desirable
responding, implicit prejudice and policy judgments, political ide-
ology and valence asymmetries in attitude formation, and a host of
other constructs (e.g., Henderson & Trope, 2009; Knowles, Low-
ery, & Shaumberg, 2010; Kross, Ayduk, & Mischel, 2005; Lal-
wani, Shrum, & Chiu, 2009; Pomerantz, Chaiken, & Tordesillas,
1995; Shook & Fazio, 2009).

When carrying out such analyses, psychologists frequently use
observed variables (e.g., a simple average of scale items), which
are typically entered into a series of regression analyses to test for
mediation (e.g., Baron & Kenny, 1986; Kenny, Kashy, & Bolger,
1998; MacKinnon, 2008; Shrout & Bolger, 2002; Wegener &
Fabrigar, 2000). However, mediation can also be tested with latent
variables through structural equation modeling (SEM; see Kline,
2005). Given this choice, which analytic strategy should a re-
searcher use?1 Statisticians often recommend latent variable mod-
els because they allow researchers to adjust for measurement error
in the measured variables (e.g., Cole & Maxwell, 2003; Kline,
2005, pp. 44, 70–77; MacKinnon, 2008, pp. 175–176). For exam-

1 Observed variable analyses are usually carried out with ordinary least
squares regression, but they can also be analyzed with maximum likelihood
estimation in structural equation modeling. These estimation methods
produce identical results for the coefficients, and so we will treat them as
exchangeable in our analyses of observed variables. The key distinction we
make in this article is between observed and latent variable models, and in
our simulation studies, we hold estimation strategy (maximum likelihood)
constant across model types.
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ple, Hoyle and Kenny (1999) showed that unreliability in the
mediating variable of a three-variable model leads to an underes-
timation of the mediated effect when analyzing observed variables.
Hoyle and Kenny therefore advocated using latent variable models
to adjust for the bias produced by measurement error.

If adjusting for measurement error makes the effect size of the
mediated path larger, one might expect that it would also increase
the power to test this effect. However, the increased accuracy of
latent variable models (which often, though not always, produces
larger coefficient estimates than those given by observed variable
models) is usually accompanied by a decrease in precision: The
standard errors of estimates produced by latent variable models
can be higher than those produced by observed variable ap-
proaches. Indeed, Hoyle and Kenny (1999) noted that the boost to
power provided by latent variable models in their study was
“minimal” (p. 219). In fact, in some cases, we suspect that latent
variable models may actually yield less power than their observed
variable counterparts. Somewhat paradoxically, then, latent (vs.
observed) variable models could sometimes yield larger but less
significant coefficients—increased accuracy but with reduced pre-
cision.

Researchers who wish to make an informed decision about
which statistical approach to take need to know more about the
nature of this accuracy–precision trade-off.2 Do latent variable
models provide much more accurate estimates than observed vari-
able models or just slightly more accurate? Do the standard errors
increase dramatically or hardly at all? Which technique is more
likely to closely estimate the true relationship between the vari-
ables in a given study, and which is more likely to correctly detect
an effect by meeting standard cutoffs for significance testing?

To address these questions, we examine a simple three-variable
mediation model3 with a latent variable approach as well as the
typical observed variable approach, and we compare both accuracy
and precision of estimates. We build on Hoyle and Kenny’s (1999)
work and extend it in several ways. First, we specifically investi-
gate the relation of the power of mediation tests to the reduction of
bias in latent variable models. Second, we consider the conse-
quences of measurement error in both the independent variable (X)
and the proposed mediator (M). For researchers studying individ-
ual differences or conducting survey-based research, unreliability
of X is likely to be a concern because the primary causal variable
of interest is often measured rather than manipulated. Moreover,
even within experimental studies, researchers are frequently inter-
ested in examining mediation paths between measured variables
(e.g., Dovidio, Kawakami, & Gaertner, 2002; Knowles et al.,
2010; Pomerantz et al., 1995; Shook & Fazio, 2009; Tormala &
Petty, 2002). In practice, then, researchers often examine media-
tion models in which the predictor variable is measured rather than
manipulated, and it is therefore important to understand the effects
of measurement error in X on accuracy and precision in estimating
mediated effects. Finally, we recommend practical approaches for
planning studies and analyzing mediation that help minimize the
deleterious effects of measurement error.

Illustrating the Problem of Bias With an Empirical
Example

To anchor our discussion in the reality of substantive research
on attitudes and social cognition, we begin with an example

adapted from the study by Hodson and Costello (2007) mentioned
earlier. Figure 1 is a three-variable simplification of a mediation
model that Hodson and Costello considered to explain the effects
of interpersonal disgust on attitudes toward immigrants. Hodson
and Costello reported that for every unit increase in interpersonal
disgust (measured with a reliability of � � .61), attitudes toward
immigrants (� � .80) became more negative by �.31 units—a
statistically significant change. When they examined social dom-
inance orientation (SDO; � � .89) as a mediator, they found that
interpersonal disgust significantly predicted SDO (path a � .36),
which in turn significantly predicted attitudes toward immigrants
(path b � �.44), and that this indirect path (a�b � �.16) was
significant, indicating mediation. The amount of the total effect
that is not explained by the indirect effect (calculated as �.31 �
(�.16)) equals the direct effect of disgust on attitudes toward
immigrants (c� � �.15).

Although Hodson and Costello (2007) reported that interper-
sonal disgust (the predictor, X) and SDO (the mediator, M) were
not measured with complete reliability, they used observed vari-
ables that do not adjust for measurement error in their analyses.
According to Hoyle and Kenny (1999), if the reliability of M is
ignored, the obtained path from M to Y is RMb rather than b, where
RM is the reliability of the measure of the mediator after partialing
out the X variable. Applying their adjustment, we can obtain a
ballpark estimate of how biased the coefficients in Figure 1 might
be. The partialed reliability of the mediator is .88, and the inferred
unbiased estimate of the b effect would be �.44/.88 � �.50,
instead of the obtained �.44. If we stopped with this informal
analysis, we would conclude that the degree of bias is small but
that the extent to which SDO mediated the link between disgust
and attitudes may have been underestimated.

Hoyle and Kenny (1999) only discussed the effects of unreli-
ability of the mediator, but a number of authors have considered
unreliability in a system of equations (e.g., Cohen, Cohen, West, &
Aiken, 2003, pp. 55–57; Duncan, 1975, Chapter 9; Heise, 1975,
pp. 188–191; Kenny, 1979, Chapter 5). The impact of unreliability
of X is complicated. On the one hand, it will generally lead to an
underestimation of the effect of X on M (path a in Figure 1) and of
the direct effect of X on Y (path c� in Figure 1). On the other hand,
because it underestimates the direct effect, it also undercorrects the
path from M to Y, and this can lead to an overestimation of the
effect of M on Y (path b in Figure 1) in the system of equations.

2 Latent variable versus observed variable models are not the only
contexts where statisticians confront bias–precision trade-off issues. Sta-
tistical texts on estimation (e.g., Mood, Graybill, & Boes, 1974) show how
bias and mean square error are distinct features of alternate estimators.

3 We examine these issues in the context of the three-variable model first
considered by Judd and Kenny (1981; see also Baron & Kenny, 1986) and
further explicated by Hoyle and Kenny (1999) because it simplifies the
presentation, but note that we do not necessarily endorse this model for
definitive mediation analyses. A number of commentators have noted that
the assumptions of the simple model need to be examined seriously,
particularly with regard to the independence of the error terms associated
with M and Y, and with regard to the need for manipulation of both X and
M (see, e.g., Bullock et al., 2010; MacKinnon, 2008; Shrout, 2011; Spen-
cer, Zanna, & Fong, 2005). We take up the issue of how the accuracy–
precision trade-off would generalize to more complicated mediation mod-
els later in the article.
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Because the indirect effect is the product a�b, the two biases can
sometimes offset each other. An additional consideration is
whether standardized or unstandardized coefficients are of interest.
When effects are in standardized form, the estimates are affected
by the reliability of the outcome as well as the predictors.4 In the
Appendix, we provide the equations for calculating the effects of
unreliability in X, M, and Y, and we describe a tool that can be
downloaded to allow convenient implementation of the equations.

When we use these equations to understand the impact of
measurement error in the Hodson and Costello (2007) example, we
estimate that the effect of interpersonal disgust on SDO (path a)
might be a full third larger (.49 rather than .36) if interpersonal
disgust had been measured more reliably. However, the overall
bias in the estimated effect of SDO on attitudes toward immigrants
is offset somewhat by the unreliability of interpersonal disgust as
an adjustment variable. The equations in the Appendix suggest that
the bias in the estimate of path b is slight, moving only from �.44
to �.49, when the full system of variables is taken into account.
Both these equations affect the estimates of the indirect (mediated)
effect and the direct effect. The indirect effect increases from �.16
to �.24 after adjustment, and the direct effect increases from �.15
to �.18. (Both are able to increase because the total effect in-
creases from �.31 to �.44.) In this particular case, then, the biases
created by unreliability of X happen to offset each other, and the
interpretation is therefore similar before and after adjustment.
There is an effect to be explained, and about half the effect is
explained by the mediating variable.

This example illustrates the complexity and interdependence of
these biases, but neither it nor the equations in the Appendix
necessarily help yield an intuition about the impact of measure-
ment error in X and M. It is possible to develop such intuitions by
using a range of different values and making a plot. Building on
the Hodson and Costello example, we contrasted two numerical
examples that had effect sizes with similar magnitudes for path a
(X 3 M) and path b (M 3 Y). We further elaborated these
examples to have no direct effect of X on Y (c� � 0) or a medium
direct effect of X on Y (c� � .3). The example representing a
medium indirect effect had a � .538 and b � �.538 (so that a�b �
.3), and the one representing a large indirect effect had a � .707
and b � �.707 (so that a�b � .5). Using the formulas in the
Appendix, we constructed Figure 2 to show the impact of different
reliability values for X and M for these four examples in terms of
the standardized indirect effect a�b. Note that measurement error
has the largest impact when it is the mediator that is poorly
measured. The effect of measurement error for the initial X vari-
able is largest when the mediator is measured reliably; this is
apparent from the fact that the lines for different X reliability
values are more widely spread when RM is close to 1.0 and draw
together as RM decreases.

Correcting Bias With Latent Variable Models:
Theory and Practice

In contrast to the usual observed variable approach to mediation
analysis, SEM models that employ latent variables can adjust for
measurement error and produce estimates of the direct and indirect
effects that are unbiased in very large samples. Figure 3 illustrates
the latent variable model. Instead of using a single indicator of the
X and M constructs, the researcher defines multiple indicators of
each construct, which are represented as latent variables by ovals
rather than boxes in Figure 3. These indicators might be alternate
forms of measures from the literature, or they might be defined as
item parcels from a multi-item measure of a construct (Little,
Cunningham, Shahar, & Widaman, 2002). Latent variable models
account for measurement error by separating the variance common
to all the indicators of a particular construct from the variance
unique to a particular indicator (which includes measurement
error). This separation allows the definition of the latent variables,
which are free from measurement error if the model is properly
specified. The latent variables can then be used in the mediation
model to produce estimates of direct and indirect effects that in
theory have no statistical bias (Hoyle & Kenny, 1999; Kline,
2005). Moreover, the results of some simulation studies seem to
suggest that using latent variables will increase path coefficient
estimates and therefore increase power (e.g., Coffman & Mac-
Callum, 2005; Stephenson & Holbert, 2003).

However, as mentioned earlier, the standard errors of the unbi-
ased latent variable estimates are often larger than those of the
biased estimates produced by observed variable models—a fact
that is typically overlooked in discussions of latent variable anal-
yses (DeShon, 2006). This makes inference about mediation more
complicated. Although mediation effect estimates will on average
be more accurate when using latent variables (vs. observed vari-
ables), these estimates will tend to vary more across studies. Thus,
in any one particular study, it is possible that the estimates pro-
duced by a latent variable approach could vary quite a bit from the
average estimate. Moreover, although a latent variable approach
can boost power by reducing the attenuation in estimates caused by
measurement error, the larger standard errors will reduce power,
potentially canceling or even outstripping the power boost pro-
vided by a larger estimated effect. This means that an investigator
could observe an apparent significant indirect effect based on
biased observed variable analyses (e.g., regression analyses) but
then find that the larger, unbiased estimate is no longer statistically

4 If the outcome Y is measured with error, its variance increases, and this
will affect standardized but not unstandardized coefficients.

Figure 1. Hodson and Costello’s (2007) observed variable model (averaged items contaminated by measure-
ment error). Path c denotes the full effect, and c� denotes the direct effect of interpersonal disgust on attitudes.
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significant when a SEM latent variable model is used with the
same data.

Just as we can study the expected bias of observed versus latent
variable model estimates using statistical theory, so can we study
their expected precision. For example, Cohen et al. (2003, p. 87)
provided expressions for the expected standard error of observed
variable estimates that depend on sample size; the variances of X,
M, and Y; and their degree of association. Bollen (1989, p. 134)
described more complicated expressions for standard errors for
latent variable estimates that are obtained from maximum likeli-
hood methods. In the Appendix, we review these expressions and
describe how the asymptotic standard errors can be computed and
compared. These are the expected standard errors of the estimates
if we knew the true underlying variances and covariances, rather
than having to estimate them.

Assessing the Theoretical Accuracy–Precision
Trade-Off

The calculations of bias and precision from the Appendix can be
used to assess the expected (i.e., theoretical) trade-off between accu-
racy and precision as one moves from a regression analysis using
observed variables to a SEM analysis using latent variables. As in
Figure 2, we decided to focus on a few examples that were loosely
based on the Hodson and Costello example. We varied the size of the
mediated effect (a�b) to correspond to Cohen’s (1988) approxima-
tions of small, medium, and large effect sizes (�2 � .1, .3, and .5,
respectively), and we considered a case in which all the constructs
were measured with high reliability (R � .9) or moderate reliability
(R � .7).

To examine the relative bias produced by an observed variable
approach, we computed the ratio of the observed variable model’s

Figure 2. Bias in large and medium indirect effects (path a�b) at varying levels of reliability in X and M. RM � reliability
of M, plotted along the horizontal axis; RX � reliability of X, ranging from 1.0 (top line) to 0.5 (bottom line).

Figure 3. Latent variable model (items as indicators). SDO � social dominance orientation.

1177ACCURACY VERSUS PRECISION IN MEDIATION



expected estimate to the unbiased values: Restimate � Estimateobserved/
Population Value. A ratio of 1 would therefore indicate no bias (in
other words, across samples, the estimates should accurately center
around the true population parameters). The lower this ratio falls
below 1, the more biased the observed variable approach that ignores
reliability is expected to be (i.e., across samples, the estimates will
center around a less and less accurate value). For large samples,
Restimate describes the ratio of Estimateobserved to Estimatelatent.

To examine the relative precision of an observed versus latent
variable approach, we computed the ratio of the expected standard
error produced by an observed variable approach to that produced
by a latent variable approach: RSE � SEobserved/SElatent. Insofar as
RSE falls below 1, it suggests that the estimates of the latent
variable model are more affected by sampling variation (and are
therefore more widely scattered across samples) than those esti-
mated by the observed variable approach that ignores measure-
ment error.

To portray the trade-off between these two aspects of the anal-
ysis—accuracy and precision—for estimates of the indirect effect
a�b, we computed Restimate and RSE ratios for different effect sizes
and levels of reliability and plotted these against each other in
Figure 4A. If the points in this plot fell on the diagonal, we could
infer that the difference in bias between the two approaches was
exactly offset by the difference in imprecision. If this were the
case, the power of each approach to detect the coefficient would be
equal (assuming the test is the usual Wald test of the estimate
divided by its standard error). Notably, the ratios in Figure 4A all
fall below this diagonal line, indicating that the increased impre-
cision of the latent variable approach outweighs its reduction in
bias. From a purely statistical standpoint then, we should expect
latent (vs. observed) variable approaches to be more accurate but
less powerful.

A Gap Between Theory and Practice: The Issue of
Small Samples

Figure 4A is based on statistical theory that assumes sample size
is not important. However, in practice, sample size can have
substantial consequences for the validity of statistical inferences
based on these two methods. Under certain assumptions, infer-
ences for observed variable analyses (e.g., regression analyses) are
valid for small sample sizes, but inferences for latent variable
analyses assume large samples (Bollen, 1989; Kline, 2005). More
specifically, significance tests for observed variable methods are
appropriate for small samples if the residuals are independent and
normally distributed; the conventional degrees of freedom in the t
and F tests explicitly take the small samples into consideration
(Cohen et al., 2003, pp. 88–90). Significance tests for latent
variable methods, on the other hand, assume that the sample is
large enough to make worrying about small sample adjustments
unnecessary. This means that in latent variable models, ratios of
parameter estimates (a, b, and c�) to their standard errors are
compared to standard normal (z) distributions rather than Student’s
t distribution.5 The smaller the sample size, the larger the impact
of this difference between observed and latent variable model
assumptions.

Recognition that the SEM methods needed to analyze latent
variable models assume large samples has led a number of meth-
odologists to suggest rules of thumb for how large the sample must

be. When analyzing simple path models (as in Figure 1) using
SEM, the question turns on when the z and t statistics are basically
the same. For example, if the sample is approximately 30 in each
of two treatment groups, the degrees of freedom would be 60 �
3 � 57, and the critical value for a two-tailed t test would be
t.05(57) � 2.00 rather than z.05 � 1.96. If an investigator found that
the ratio of the estimate to its standard error was exactly 1.96, the
test would be just significant at p � .05 with a z test, but it would
have a p � .0549 if evaluated with a t test on 57 degrees of
freedom. Most would agree that this difference would not open the
floodgates of Type I error. From this perspective, a sample size of
60 or more can be considered large enough.

However, a different problem arises when one fits SEM models
such as the one in Figure 3, which are called hybrid models
because they include both latent variables and structural paths
(Kline, 2005, pp. 208–233). When the sample size is small, the
data are often inadequate to provide a stable numerical solution to
the model. For example, Hoyle and Kenny (1999) simulated data
sets with sample sizes of 25, 50, 100, and 200 and fit the data with
a hybrid model similar to the one shown in Figure 3. In 522
simulated data sets (out of 24,000), the SEM analysis had estima-
tion problems (failure to converge, impermissible values of esti-
mates or standard errors), and nearly all of these occurred in
samples with 25 or 50 observations. This result led Hoyle and
Kenny to recommend that investigators aspire to obtain sample
sizes of at least 100 when planning to use SEM latent variable
models to adjust for statistical bias in mediation analysis.

Because latent variable analyses can become unstable when
applied to the sample sizes that are often used in social psychol-
ogy, we cannot be confident that the asymptotic results we just
reviewed apply to real-world empirical studies. To determine
whether the same trade-off is observed in smaller samples, we
carried out a series of simulation studies that allowed us to look at
the average size of the estimate and the average standard error in
smaller samples. These studies extend the work of Hoyle and
Kenny (1999) by considering bias correction when X and Y as well
as M are measured with error and by considering the precision–
accuracy trade-off.

Simulation studies are carried out with computer programs to
create data that are consistent with a known population model.
These data can be analyzed with different analytic methods to see
how well each method can recapture the known true values used in
the simulations. Because the data are constructed with a combina-
tion of known structure (the true values) and random numbers
from random number generators (to reflect the kind of sampling
fluctuation researchers encounter in the real world), it is possible
to study both bias and precision of the estimates produced by each
analytic method by creating a large number of samples and study-
ing the distributions of each method’s estimates. In our simula-

5 When researchers wish to test the indirect effect, â�b̂, they are advised
to use bootstrap methods of inference rather than the usual ratio of the
estimate to its standard error (e.g., Shrout & Bolger, 2002). This is not
because estimated standard errors of the indirect effect are inaccurate, but
because the distribution of the estimated indirect effect is nonnormal
(MacKinnon et al., 2002). This advice applies to tests of the indirect effect
in both observed and latent variable models. Although the bootstrap is
needed for accurate inference, the standard error still contains useful
information about the relative precision of the estimator.
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tions, we used the same models that we created for the evaluation
of the asymptotic findings in Figure 2. As described in detail in the
next section, we created models that had small, medium, or large
effect sizes for the indirect effect; half of these also included a
direct effect of X on Y, whereas half did not. Beyond the structure
of the mediation model, we created indicators that had either
modest reliability or high reliability. This was done by adding
different amounts of random noise to the variables involved in the
mediation. Each of the many simulated data sets was then analyzed
twice, once with observed variable methods that ignored the prob-
lem of unreliability and once with latent variable models that
attempt to adjust for unreliability.

Method

To anchor our study in a real-world example, we based our
simulations on Hodson and Costello’s (2007) mediation model
described earlier, in which SDO mediates the relation between
interpersonal disgust and attitudes toward immigrants (see Figures
1 and 3). The data were generated to be consistent with the
Figure 3 version of this model, so that the first latent variable
(interpersonal disgust) positively influenced the second (SDO),
which negatively influenced the third (attitudes toward immi-
grants). As we did in constructing Figures 2 and 4, we kept the
absolute size of the a effect equal to that of the b effect (see Table 1),
and we set these to create indirect effects (a�b) that varied in size
from small (a�b � �.1) to medium (a�b � �.3) to large (a�b �
�.5). To increase the generalizability of our findings, we created
one mediation model (Model 0) in which the direct effect c� was
set to 0 (consistent with a situation in which the association
between X and Y was completely explained by the intervening
mediator M) and one mediation model (Model 1) similar to the
results reported by Hodson and Costello with a medium direct
effect (c� � �.3). We defined the latent variables so that they
would have expected variances of 1. We did this by fixing the
population variance of the latent variable representing interper-

sonal disgust to 1, and then we computed the variance of the
disturbance of the mediator (SDO) as 1 � a2 and the variance of
the disturbance of the outcome variable (attitudes) as 1 � (b2 �
c�2 � 2abc�).

Next, we simulated three indicators for each of the three factors.
When creating the indicators, we added either a small or moderate
amount of random noise to manipulate the reliability of the mea-
sures between high (R � .9) and moderate (R � .7). The paths
between the latent variables and the indicators were set equal to 1,
and the reliability was manipulated by adding measurement error
variance to the indicators. We calculated the item error variances
for the desired values for the two levels of reliability R using the
formula 3(1 � R)/R, where 3 reflects the number of items in the
scale.

Hodson and Costello (2007) reported a sample size of close to
100 (N � 103). Hoyle and Kenny (1999) suggested that latent

Figure 4. The accuracy–precision trade-off for testing the indirect effect in a three-variable mediation model
with no direct effect (labeled by effect size and reliability). Dotted line indicates the border at which the
increased accuracy provided by a latent variable (LV) approach ought to be exactly offset by an increase in
standard error. (A) Theoretical trade-off based on computed expected values: on the x-axis, ratio of expected,
biased observed variable (OV) estimates to unbiased value for the indirect effect (path a�b); on the y-axis, ratio
of expected OV standard error to expected LV standard error. (B) Corresponding results based on actual values
obtained in simulation studies (sample size � 100): on the x-axis, ratio of average coefficient estimates for the
indirect effect (a�b) produced by OV versus LV approaches; on the y-axis, ratio of mean standard errors
produced by OV versus LV approaches. Med � medium.

Table 1
Actual Values Used in Simulation

Effect sizea a b c� (direct) a�b (indirect)

Model 0 (c� � 0)

Small (.1) .316 �.316 0 �.100
Medium (.3) .548 �.548 0 �.300
Large (.5) .707 �.707 0 �.500

Model 1 (c� � �.3)

Small (.1) .316 �.316 �.300 �.100
Medium (.3) .548 �.548 �.300 �.300
Large (.5) .707 �.707 �.300 �.500

Note. a � direct effect of interpersonal disgust on social dominance
orientation; b � direct effect of social dominance orientation on attitudes
toward immigrants; c� � direct effect of interpersonal disgust on attitudes
toward immigrants; a�b � indirect effect of interpersonal disgust on
attitudes toward immigrants.
a Indirect effect of disgust on attitudes.
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variable models could be fruitfully employed with sample sizes of
at least 100 (with smaller sample sizes, they found that estimates
became less accurate and technical problems were more likely to
surface, as noted earlier). Given that small sample sizes are com-
mon in the field of social psychology, we used a sample size of 100
in our simulations to allow for appropriate generalizations to the
typical studies conducted in this field (see e.g., Paxton, Curran,
Bollen, Kirby, & Chen, 2001). In our study, we created 1,000 data
sets of 100 observations each using Mplus software (Muthén &
Muthén, 2010) for each cell of a 3 (indirect effect size: small vs.
medium vs. large) � 2 (reliability: moderate vs. high) � 2 (direct
effect model: Model 0 vs. Model 1) design. (See http://
sites.google.com/site/ledgerwoodshrout2011 or e-mail the authors
for examples of the syntax used to generate a simulation.)

Next, we analyzed the data sets we had simulated for each of the
12 cells of the study design using two analytic strategies. In the
first (observed variable analysis), we averaged the three items for
each variable together to form composite scores and then used
simple regression methods to estimate paths a, b, and c�, as in
Figure 1. Because we want to consider both accuracy and preci-
sion, we focused on unstandardized coefficients. In the second
(latent variable analysis), we allowed the items to act as indicators
for their respective factors and fit the data to a SEM model as in
Figure 3.6 We conducted both sets of analyses in Mplus (Muthén
& Muthén, 2010) using maximum likelihood estimation.

The two sets of analyses allow us to examine the distribution of
the estimates over the 1,000 data sets. If an estimate is unbiased,
the mean of the 1,000 sample estimates will be close to the
population value used to create the data (see Table 1). If an
estimate from one method is more precise than the other, the
standard deviation of the 1,000 sample estimates will be smaller
for the one than the other. The standard error from a single analysis
is designed to approximate the standard deviation from the multi-
ple replications. Just as we can examine the standard deviations for
estimates of a, b, and c�, we can also examine the standard
deviation of the product of the a and b estimates when comparing
observed variable and latent variable estimation methods. These
standard deviations are well estimated by the Sobel standard error
formula (Sobel, 1982) and related estimates (MacKinnon, Lock-
wood, Hoffman, West, & Sheets, 2002).

In addition to comparing the precision of observed and latent
variable estimates of the indirect effect using the standard devia-
tions from the simulations, we considered carrying out bootstrap
analyses (Efron & Tibshirani, 1993; Shrout & Bolger, 2002) on
each of the 1,000 simulated data sets within each condition.
Significance tests of the indirect effect based on bootstrapping
have been shown to be more accurate than those based on normal
theory tests (MacKinnon, Lockwood, & Williams, 2004), and
bootstrapping is available for a single analysis in structural equa-
tion programs such as Mplus for both observed and latent variable
models. However, bootstrapping is not currently available in
Mplus simulations, and hence we could not provide an easily
implemented method for readers to replicate and extend our re-
sults. For this reason, we rely on the standard error of the indirect
effect as a useful method for comparing the relative precision of
observed and latent variable models across our aggregated data
sets, even as we recommend using the bootstrap method for
ultimately reporting results from a single study.7

Results

The latent variable SEM model failed to converge for three of
the 12,000 data sets (all in the moderate reliability, large effect size
condition: two for Model 0 and one for Model 1), and so the
estimates from these data sets were excluded from subsequent
analyses. For each remaining data set, estimates of the indirect
effects for the path and hybrid models were computed by multi-
plying a�b (see Figure 3), and the associated standard errors were
calculated in Mplus with a formula similar to the Sobel standard
error recommended by Baron and Kenny (1986). Whereas the
Sobel approach assumes that the estimates for paths a and b are
uncorrelated, Mplus uses a multivariate delta method and does not
make this assumption (see Bollen, 1989, p. 391).

Table 2 shows the mean unstandardized estimates of the direct
and indirect effects, the mean standard errors associated with these
effects, and the average magnitude of bias (computed as the
difference between the average coefficient estimate and the true
parameter value used in the simulation) produced by each analysis
strategy at each level of reliability, indirect effect size, and direct
effect model. The top portion of the table shows the results for the
observed variable analysis, and the bottom portion shows results
for the latent variable analysis.

Accuracy

The observed variable analyses yielded systematically biased
estimates, consistent with predictions from psychometric theory
represented in the Appendix. As expected, the estimates of path a
in these analyses were attenuated by a factor equal to the under-
lying reliability of the composite measures (see, e.g., Kenny, 1979,
Chapter 5). For example, in the medium effect size condition, the
path a that was set to .548 in the simulation was estimated to be

6 We modeled Y as a latent variable in these analyses simply to reflect
what social psychologists often do in practice. Note, however, that leaving
it as an observed variable will produce very similar results, as error in the
outcome variable does not create bias in the coefficient estimates.

7 To verify the assumption that the standard error of the indirect effect
provides information about precision that is comparable to the bootstrap
method, we sampled 54 simulated data sets (nine from each of the condi-
tions shown in Table 1) to represent the range of precision conditions, and
we carried out bias-corrected bootstrap analyses of the indirect effect
within each individual data set using Mplus for both the observed variable
model and the latent variable model. As a measure of precision, we
calculated the width of the bootstrap confidence interval from the estimate
to the bound relevant to the significance test (the upper bound in our
example). We compared this bootstrap measure with the estimated standard
error across the 56 samples. The two measures of precision were highly
correlated: .97 for observed variable models and .94 for the latent variable
models. We also found that the ratios of the bootstrap interval to the
standard error were very similar for the two kinds of models: 1.63 for the
observed variable indirect estimate and 1.60 for the latent variable indirect
effect. Had the normal theory test of the indirect effect been equivalent to
the bootstrap test, we would have expected these ratios to be 1.96 on
average. Because the deviation from this value was comparable for both
observed and latent variable models, we can conclude that comparing the
precision of the two types of models based on standard errors will lead to
the same conclusions about relative precision as would using an alternative
measure based on bootstrap methods. We thank our reviewers for helping
us to clarify this and other points.
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.381 in both Model 0 and Model 1 when reliability was moderate,
which is approximately a�.7.

The amount of attenuation for effect b was not precisely pro-
portional to the reliability, but the bias did increase as reliability
decreased.8 For example, in the medium effect size condition of
Model 0, the average estimate for the path b that was set to �.548
in the simulation was �.473 when reliability was high and de-
creased to �.352 when reliability was moderate.

The bias associated with the direct path c� was affected by both the
level of reliability and the sizes of the a and b effects. In Model 1, path
c� was underestimated in some cases and slightly overestimated in
others, and bias was generally reduced as reliability increased. In
Model 0, where path c� was set to 0 in the simulation, the average
estimates produced by the observed variable approach deviated from
0—an issue to which we return in our discussion of power and Type
I error.

The bias associated with the indirect path (a�b) was approxi-
mately equal to the product of the reliabilities of the two composite
measures. For instance, when the reliability of the two measures
was moderate (.7), the estimated effect was approximately half
(.49) the size of the effect used to generate the data.

In contrast, the latent variable analysis produced estimates that
tended to be centered almost exactly at the actual parameter values
(see Table 2, bottom portion). This pattern of differences between the

two approaches occurred across all cells of the design but was most
striking when scale reliability was moderate. For example, in Model
1, the medium indirect effect of �.300 was on average estimated as
�.304 by a latent variable approach, but as only �.150 by the
observed variable approach that ignored measurement error.

Precision

Table 2 reveals other remarkable differences between observed
and latent variable approaches to mediation analyses, namely the
sizes of the standard errors of the estimates for the two analytic
strategies. Consistent with the results from large sample statistical
theory, the typical standard errors produced by the observed vari-
able analysis of the composite scores were fairly small for the
samples with N � 100, but those produced by the latent variable
approach were considerably larger. Again, this pattern occurred
across all cells of the design but was exacerbated as reliability
decreased and effect sizes increased, and was most pronounced for
the indirect effects.

8 The relation of attenuation to reliability is complicated in observed
variable analyses because the measurement error affects both the direct
path and the adjustment effects.

Table 2
Observed and Latent Variable Results of Mediation Model in the Presence of Measurement Error Shown for Each Cell of the 2
(Reliability) � 3 (Indirect Effect Size) � 2 (Direct Effect Model) Design: Mean Coefficients, Mean Standard Errors, and the Average
Magnitude of Bias (the Absolute Difference Between the Mean Coefficient and the Actual Parameter Values)

Mediation R Effect size Na

a b c� (direct) a�b (indirect)

B SE Bias B SE Bias B SE Bias B SE Bias

Observed variable results

Model 0 .7 Small 1,000 .219� .097 .097 �.213� .100 .103 �.022 .100 .022 �.047 .032 .053
Medium 1,000 .381� .092 .167 �.352� .100 .196 �.075 .100 .075 �.134� .051 .166
Large 1,000 .493� .087 .214 �.422� .099 .285 �.140 .099 .140 �.208� .062 .292

.9 Small 1,000 .283� .096 .033 �.279� .100 .037 �.010 .100 .010 �.079� .040 .021
Medium 1,000 .492� .087 .056 �.473� .100 .075 �.037 .100 .037 �.233� .065 .067
Large 1,000 .635� .077 .072 �.585� .100 .122 �.077 .100 .077 �.372� .079 .128

Model 1 .7 Small 1,000 .219� .097 .097 �.234� .096 .082 �.227� .096 .073 �.051 .033 .049
Medium 1,000 .381� .092 .167 �.392� .090 .156 �.269� .090 .031 �.150� .051 .150
Large 1,000 .493� .087 .214 �.482� .082 .225 �.321� .082 .021 �.237� .059 .263

.9 Small 1,000 .283� .096 .033 �.289� .093 .027 �.278� .093 .022 �.082� .040 .018
Medium 1,000 .492� .087 .056 �.493� .083 .055 �.297� .083 .003 �.243� .060 .057
Large 1,000 .635� .077 .072 �.618� .065 .089 �.326� .065 .026 �.393� .064 .107

Latent variable results

Model 0 .7 Small 1,000 .320� .163 .004 �.323 .180 .007 .003 .167 .003 �.101 .080 .001
Medium 1,000 .557� .178 .009 �.569� .239 .021 .011 .209 .011 �.313 .164 .013
Large 998 .718� .189 .011 �.762� .380 .055 .037 .342 .037 �.542 .322 .042

.9 Small 1,000 .316� .110 .000 �.316� .118 .000 .000 .115 .000 �.100 .052 .000
Medium 1,000 .549� .107 .001 �.549� .131 .001 .000 .123 .000 �.301� .091 .001
Large 1,000 .709� .102 .002 �.711� .149 .004 .002 .138 .002 �.503� .125 .003

Model 1 .7 Small 1,000 .318� .162 .002 �.321 .173 .005 �.308 .171 .008 �.097 .075 .003
Medium 1,000 .555� .176 .007 �.563� .218 .015 �.305 .196 .005 �.304� .146 .004
Large 999 .717� .184 .010 �.757 .434 .050 �.277 .392 .023 �.535 .370 .035

.9 Small 1,000 .316� .110 .000 �.316� .110 .000 �.302� .110 .002 �.099� .050 .001
Medium 1,000 .549� .107 .001 �.549� .111 .001 �.302� .105 .002 �.300� .081 .000
Large 1,000 .709� .102 .002 �.710� .106 .003 �.301� .094 .001 �.502� .096 .002

a Number of simulated studies used to calculate the statistics in the table.
� Average coefficient would be significant at the p � .05 level.

1181ACCURACY VERSUS PRECISION IN MEDIATION



The standard errors produced by the latent variable approach
were especially inflated for the moderate reliability, large effect
size condition. A closer examination of the distributions of esti-
mates in this cell reveals that the latent variable approach produced
a handful of wildly inaccurate outliers. For instance, Figure 5
shows the distribution of estimates for path a�b. Although the
majority of the estimates are accurately clustered around the true
parameter value of �.500, a number of them deviate quite sub-
stantially (note also that the negatively skewed distribution pulls
the mean estimate down below the true parameter value).

The Bias–Precision Trade-Off in Samples With
N � 100

Just as we examined the accuracy–precision trade-off when
considering statistical theory (see Figure 4A), we can plot the
relative precision of the latent and observed variable approaches
against their relative accuracy using the empirical small sample
results from Table 2. Figure 4B shows this trade-off based on the
average estimates of the indirect effect in our simulation study on
samples with N � 100, as a function of effect size and reliability
for Model 0. The actual results in Figure 4B closely mirror the
theoretically expected values in Figure 4A. The points all fall
below the dotted line, indicating that the latent (vs. observed)
variable approach produced estimates that are more accurate but
less powerful, especially as reliability decreases and effect size
increases.

Taking the moderate reliability, medium effect size cell of
Model 0 as an example, we can also compare the range of esti-
mates produced by the two analysis strategies (see Figure 6 for a
visual comparison of the estimates produced by each approach for
the indirect effect in this cell). The sizes of the estimates produced
by the observed variable approach that ignored measurement error

were typically smaller than the actual parameter values for paths a,
b, and a�b and too large for path c�. In contrast, the estimates
produced by the latent variable approach were typically close to
the actual parameter values. However, they varied widely, and
several fell substantially further from the true parameter value than
the most extreme estimates produced by the observed variable
approach. Overall, the latent variable approach yielded estimates
that were better centered on the actual parameter value, and that
usually—but not always—came closer to the actual parameter
values than the estimates produced by an observed variable ap-
proach. Thus, the inflated variability in the estimates was caused
by most of the estimates varying as much above the actual param-
eter values as below and by a number of outliers that (as noted
earlier) tend to dramatically overestimate the effect. As Figure 6
illustrates for the indirect effect, the observed variable estimates
almost never recovered the true parameter value, whereas the
latent variable estimates averaged very close to it, and yet this
latter approach also produced a substantial minority of estimates
that were further from the true parameter value than any of the
observed variable estimates. This finding underscores the impor-
tance of replication when using latent variable techniques.

Power

We also examined the bias–precision trade-off at a lower level
by testing each coefficient in each data set for significance, to
compare how frequently an observed versus latent variable ap-
proach produced significant results. This can be viewed as a power
analysis for these approaches when the sample is set to 100 and the
effect sizes are set to the designated values in Table 1.

For the most part, the two analytic strategies had comparable
power for tests of path a (see Table 3), although the observed
variable analysis had somewhat greater power to detect path a
when reliability was moderate and the indirect effect size was
small. More striking differences between the two approaches
emerged for the tests of effect b and a�b: The observed variable

Figure 5. Box plot of the estimates produced by a latent variable ap-
proach for path a�b in the moderate reliability, large effect size condition
for Model 0.

Figure 6. Comparison of the distribution of estimates produced by ob-
served versus latent variable approaches for path a�b in the moderate
reliability, medium effect size condition for Model 0.
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approach had more power to correctly detect these effects across
all levels of reliability and effect size. This difference was espe-
cially pronounced when reliability was moderate. For instance, in
Model 0 with .7 reliability, the power for the observed variable test
of the a�b effect was about .85 for the medium effect size but
dropped to only about .53 for the latent variable test of the same
effect.

The power comparisons are most meaningful if the approaches
have the same level of Type I error. However, Table 3 reveals a
Type I error problem. For Model 0, one expects the percent of
significant tests of effect c� to be 5%, the conventional Type I error
rate. This is because the true value of c� in the simulation was set
to 0 for this model. For the latent variable analyses, the percent of
significant findings for Model 0 tests of path c� was below 5%
when scale reliability was moderate and just slightly above (5.5%–
6.1%) when reliability was high. However, when these same data
were analyzed with an observed variable approach, the percent of
significant findings for path c� ranged from 5.8% to as large as
30.1%, indicating an increased risk of Type I errors for the ob-
served variable analysis of contaminated measures (for more on
Type I errors in regression estimates when variables are measured
with error, see Bollen, 1989; Cole & Maxwell, 2003, pp. 566–568;
Kenny, 1979, pp. 79–83). The Type I error rate increased as
reliability decreased and as indirect effect size increased. The fact
that the observed variable approach has an inflated Type I error
rate for Model 0 is problematic and calls into question its apparent
greater power for detecting path c� in Model 1: When analyzing

real data, it would be impossible to know whether an observed
variable approach detected path c� because it was really there (as
in Model 1) or simply because of an inflated Type I error rate (as
in Model 0).

Discussion

The results of both the theoretical analysis and the simulation
studies presented here suggest that the trade-off between accuracy
and precision in latent variable modeling is both sizable and
complex. In line with past research (e.g., Hoyle & Kenny, 1999;
Stephenson & Holbert, 2003), we found that latent variable models
provided coefficient estimates that were typically more accurate
(and appreciably larger, for paths a, b, and a�b) than those pro-
duced by an observed variable approach that ignored measurement
error. However, the adjustment for measurement error came at a
cost. The precision of the latent variable models was noticeably
reduced relative to observed variable models. Latent variable mod-
els have more parameter estimates than observed variable models
and consequently are able to fit the data better. This means that
these models fit sampling fluctuations more than observed variable
models, with the result that the estimates are more influenced by
sampling noise. As a consequence, in any one sample in our
simulation study, latent variable estimates could substantially
over- or underestimate the actual parameter value, and that risk
was reflected in larger standard errors. In contrast, observed vari-
able analyses yielded biased estimates that were sizably smaller

Table 3
Percent of Observed and Latent Variable Estimates That Reached Significance (p � .05) for Individual Studies Each With Sample
Size 100

Mediation R Effect size Na a b c� a�b

Observed variable results

Model 0 .7 Small 1,000 60.7 57.8 6.7 14.4
Medium 1,000 97.7 92.6 12.6 84.7
Large 1,000 100 98.1 30.1 97.5

.9 Small 1,000 81.8 77.9 5.8 44.0
Medium 1,000 100 99.2 7.3 98.6
Large 1,000 100 99.9 13.6 99.9

Model 1 .7 Small 1,000 60.7 69.8 64.7 19.9
Medium 1,000 97.7 98.2 83.7 93.0
Large 1,000 100 99.9 97.4 99.7

.9 Small 1,000 81.8 85.1 84.6 52.1
Medium 1,000 100 99.9 94.0 99.8
Large 1,000 100 100 99.6 100

Latent variable results

Model 0 .7 Small 1,000 52.7 44.9 3.8 5.9
Medium 1,000 95.6 75.7 3.8 53.1
Large 998 99.7 72.0 3.8 60.9

.9 Small 1,000 81.2 76.1 5.5 41.0
Medium 1,000 99.9 98.5 6.1 97.5
Large 1,000 100 99.7 6.1 99.7

Model 1 .7 Small 1,000 52.7 49.0 45.8 8.8
Medium 1,000 95.8 82.9 37.7 70.9
Large 999 99.8 83.1 31.0 80.3

.9 Small 1,000 81.1 80.9 80.7 48.2
Medium 1,000 99.9 99.9 83.1 99.5
Large 1,000 100 100 88.6 100

a Number of simulated studies used to calculate the percentages in the table.
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than the actual parameter values for a, b, and a�b, but did so
consistently and therefore had smaller standard errors.

Precision Versus Accuracy

The trade-off between precision and accuracy and the question
of which to prioritize echoes an ongoing discussion in the field
about alternative goals in conducting research (e.g., Abelson,
1985; Cohen, 1990, 1994; Cortina & Dunlap, 1997; Prentice &
Miller, 1992; Schmidt, 1996). Whereas some studies focus primar-
ily on establishing evidence that an effect exists (the purview of
null hypothesis testing), others seek to shed light on the strength of
the relations between variables. The latter goal calls for estimating
parameter values and for representing precision with confidence
intervals. Researchers concerned with the first goal are likely to be
most concerned with maximizing precision, whereas researchers
concerned with the second are likely to prioritize accuracy.
Clearly, however, both are important, and we need to understand
the costs of choosing an analytic strategy that achieves one at the
expense of the other.

Because the observed variable approach yields estimates that are
more precise, analyses that take this approach can apparently have
more statistical power. Investigators using observed variables may
therefore obtain results that seems worth reporting on the basis of
the statistical significance of the mediated indirect effect. How-
ever, the seeming advantage of this approach for a single article is
likely to be a disadvantage for the field. Our analysis shows that
the observed variable approach is likely to underestimate the
amount of variation that is explained by the mediating variable.
Theory construction and testing can be hampered by these errors,
especially if the biased results are replicated by other observed
variable analyses.

From an accuracy standpoint, the latent variable approach
tended to give better estimates on average across all levels of effect
size and reliability. Both direct and indirect effects were more
likely to be correctly estimated when latent rather than observed
variables were employed. Thus, the best way to shed light on the
true value of the relations between psychological constructs is to
use latent variable methods, especially when employing measures
that do not have high reliability. However, in such cases, it is
particularly important to collect larger samples to offset the im-
precision of the latent variable approach.

Moreover, a latent variable approach is less likely than an
observed variable approach to incorrectly detect some null effects,
such as path c� in Model 0 (when the true parameter value was 0;
see also Cole & Maxwell, 2003, pp. 566–568). Whereas the latent
variable approach produced Type I error rates for path c� that were
quite close to the expected 5%, the observed variable approach
yielded larger percentages of Type I errors, especially for the large
effect size conditions. Thus, when the mediating variable is mea-
sured with error, observed variable approaches are too likely to
incorrectly detect a direct effect of X on Y when none exists.
Similarly, in supplementary analyses not reported here, an ob-
served variable approach was sometimes too likely to detect an
effect of M on Y (path b) when this path was set to 0 in the
simulation.

Taken together, then, these findings suggest that ironically, an
observed variable approach that ignores measurement error often
yields incorrect estimates with little variability, whereas a latent

variable approach tends to converge on the correct parameter
values but with greater uncertainty. Importantly, this pattern was
especially pronounced when the measures in our model had only
moderate reliability. When reliability is high, the estimates pro-
duced by an observed variable approach are less attenuated (see
also Hoyle & Kenny, 1999), and a latent variable approach yields
smaller standard errors and is often as powerful as a model based
on observed variable analyses. In other words, the better defined a
factor is, the smaller the costs involved with either approach.

As reliability decreases, both approaches become more trouble-
some. Even with an alpha of .7, which is typically considered an
acceptable level of reliability in our field, observed variable ap-
proaches greatly underestimate path coefficients and can produce
highly inflated Type I error rates, and latent variable approaches
lose considerable power and (especially with large effect sizes) can
occasionally yield wildly inaccurate estimates. Thus, one key
implication of the present study is that low or even “moderate”
levels of reliability can be more problematic than social psychol-
ogists often assume in their day-to-day research.

Implications and Recommendations

In this article, we built on Hoyle and Kenny (1999), who
considered the bias associated with unreliable mediating variables
but perfectly reliable X variables. Perfect reliability for the initial
X variable is most conceivable when it represents level of an
experimental manipulation. We extended this previous work by
examining the relative precision of observed versus latent variable
approaches and by examining models with unreliability in both the
predictor and mediating variables. In separate analyses (not re-
ported here but available from the authors), we replicated the
biases reported by Hoyle and Kenny with a simulation study that
treated X as binary (reflecting a two-condition experiment). These
analyses also verified that the accuracy–precision principles we
have described apply similarly (though slightly less dramatically)
to mediation studies arising from experiments. Regardless of
whether a predictor is manipulated or measured, the increased
accuracy provided by a latent variable approach comes at the cost
of reduced precision.

This pattern has important implications for social psychologists
seeking to shed light on questions of mechanism and process via
mediation methods. If we want to advance science, we need both
unbiased estimates that converge on the true relations between
variables in the population and stable results. Given the present
findings, it is now clear that not only are observed variable
analyses potentially biased, but latent variable analyses are poten-
tially unstable. Researchers must therefore strive to avoid both of
these pitfalls. Below we outline three recommendations for max-
imizing both accuracy and precision in mediation analyses. The
first two are well known to quantitative researchers but bear
repeating in this context. The third suggests a new, two-step
analytic strategy that capitalizes on the benefits provided by each
approach studied here while sidestepping drawbacks associated
with relying exclusively on observed or latent variable analyses.

1. Invest in reliable measures. Attempting to adjust for
unreliability will always be more complicated than sim-
ply using a reliable measure in the first place. Table 3
illustrates the dramatic boost in power to detect an indi-
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rect effect shown by both analytic approaches when
reliability increases. Instead of settling for measures with
mediocre reliability on the assumption that an alpha of .7
is considered adequate, researchers may wish to take
advantage of this power boost and seek out more reliable
measures.

2. Plan mediation studies that have adequate power. The
Mplus syntax used for our simulation studies (see http://
sites.google.com/site/ledgerwoodshrout2011) can pro-
vide an important and useful tool when planning a me-
diation study that will be analyzed with a latent variable
approach. It can be modified to estimate power to detect
paths in any three-variable model and can be adjusted to
see the effects of increasing reliability or sample size.

3. When highly reliable measures are unattainable, use a
two-step strategy for testing and estimating the indirect
effect in a three-variable mediation model. In Step 1, use
observed variables to test the indirect effect a�b for
significance.9 In Step 2, estimate a�b using a latent
variable approach that adjusts for measurement error.

Limitations and Extensions

We limited our theoretical and empirical analyses to mediation
models in which the variables were normally distributed, with the
exception of the supplemental analyses briefly mentioned above
that treated the X variable as binary. It is possible that the results
would be different for nonnormal data, such as skewed data or
ordinal data, and future research should investigate this possibility.
Moreover, the application of structural equation models to non-
normal data becomes increasingly problematic as the sample size
gets small (Wang, Fan, & Willson, 1996). The Mplus syntax that
we provide online can be modified to examine small sample
studies when certain nonnormal data patterns are expected.

To describe the precision of the mediation effects, we focused
on expected and observed standard errors of the estimates. Impor-
tantly, our simulation studies verified that the estimated standard
errors gave values that approximated the observed variation of the
a, b, c�, and a�b estimates. Although the standard errors provide a
convenient index of precision, we are not recommending that
normal theory tests based on the standard errors be used to test the
indirect effect, a�b, in an individual study. The distribution of the
indirect effect is not normally distributed, and normal theory tests
of indirect effects are typically conservative (e.g., Shrout &
Bolger, 2002). The absolute number of significant results reported
in Table 3 for the indirect effect would be larger (for both observed
and latent variable estimates) if the bootstrap were used for tests,
but the overall result that latent variable models are less powerful
than observed variable models is not expected to change (see
Footnote 7).

Kenny (personal communication, July 1, 2008) pointed out that
the precision of latent variable estimates can be increased if it is
possible to constrain the paths from the latent variables to the
observed indicators (i.e., loadings) to be equal. This constraint was
appropriate in our simulation studies, which assumed constant
confirmatory factor loadings and identically scaled variables (but
note that in practice, researchers will want to choose constraints

appropriate for their theoretical model and data set).10 In analyses
not reported here but available from the authors, we confirmed that
the constraint did indeed improve the precision of the estimates
from the latent variable approach, but the increase was small
relative to the overall accuracy–precision trade-off described
here.11 When indicators are created from construct-based parcels
of balanced items, it is advisable to take advantage of the improved
precision of constrained factor loadings.

Although item parcels can be useful in defining latent variables,
Sterba and MacCallum (2010) recently showed that the composi-
tion of the items into the parcels adds an extra source of variation
into the analyses. The amount of variation due to parcel allocation
decreases when sample size gets larger, when the number of items
allocated to parcels increases, and when the internal consistency of
the item set increases. In cases where parcel allocation variation is
of concern, Sterba and MacCallum offer a programming tool to
reduce its effects by averaging results from randomly allocated
parcel groups.

In some cases, the sample size in a mediation study is not
sufficient to consider latent variable models that can adjust for
measurement error. At the very least, we recommend that inves-
tigators acknowledge the possibility of bias in these cases. Coff-
man and MacCallum (2005) described a way to adjust for unreli-
ability with a structural equation program when the degree of
reliability is considered to be a known constant rather than a
quantity to be estimated from latent variable models. This method
should be considered regardless of whether the measured variable
is a simple sum of items or a weighted average of items such as a
factor score. Even though factor scores have somewhat better
reliability than simple averages (McDonald, 1999; p. 89), they are
still contaminated by measurement error in the items. McDonald’s
(1999) omega statistic provides the appropriate reliability estimate
if factor scores are used. The Coffman and MacCallum adjusted
analysis can be fit with a somewhat smaller sample than a latent
variable model; the final result depends on the assumed reliability
value rather than a comprehensive model of the data.

Finally, we note that we deliberately avoided using the language
of “partial” and “complete” mediation in this article. Although this
distinction is clear in population models such as Model 0, for
which the value of c� was exactly 0, the claim of complete
mediation is problematic in practice. When observed variables are
not perfectly reliable, our results show that investigators who
analyze observed variables are likely to reject the null hypothesis,
H0: c� � 0, even if Model 0 is correct. On the other hand, when
latent variable models are used, there is rarely sufficient power to
definitively establish that the direct effect is 0. We therefore join
others in recommending that investigators pursue mediation mod-

9 In supplementary analyses (not reported here but available from the
authors), we confirmed that the observed variable approach generally
produces acceptable Type I error rates when there is in fact no real indirect
effect (i.e., when path a and/or path b is set to 0 in the simulation).

10 For instance, when variables are not scaled identically, communalities
can be constrained to be equal across the indicators of a particular latent
variable.

11 The constraint was more successful at increasing the precision of the
latent variable approach when X was binary and uncontaminated by mea-
surement error.
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els that help explain associations but refrain from attempting to
conclude that no other mediation path need be considered (see,
e.g., Rucker, Preacher, Tormala, & Petty, 2011).

Conclusion

Whereas an observed variable approach to mediation analysis
produces biased estimates with little variability, a latent variable
approach produces estimates that converge on the true value of the
indirect effect, but at the cost of increased standard errors and reduced
power to detect the effect in the first place. Researchers could capi-
talize on the advantages of each approach in a three-variable media-
tion model by using an observed variable analysis (e.g., regression) to
test an indirect effect for significance and a latent variable analysis
(e.g., SEM) to estimate the path coefficient more accurately.
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Appendix

Calculating Expected Bias and Precision

Expected Bias of Ordinary Least Squares (OLS) When
Unreliability Is Ignored

The path model from Figure 1 implies two regression equations.
To simplify the analysis, we assume that the variables all have
mean 0. The equations are

M � aX � eM

Y � bM � c�X � eY.

Cohen et al. (2003) described the OLS estimates for unstandard-
ized variables as follows:

�̂ � rMX�	SM ⁄ SX
 (A1)

b̂ � � rMY � rXYrXM

1 � rXM
2 �� SY

SM
� (A2)

ĉ� � � rXY � rMYrXM

1 � rXM
2 �� SY

SX
� . (A3)

The quantities rMX, rMY, and rXY represent the correlations
among the X, M, and Y variables, and the quantities SX, SM, and
SY represent the standard deviations of the variables. When the
ratios of the standard deviations are removed, the equations
give standardized regression estimates. If X and M are measured
without error, then these estimates provide unbiased estimates
of population values. However, if X has reliability RX, M has
reliability RM, and Y has reliability RY, then the observed
correlations become rXM

� � rXM�RXRM, rXY
� � rXY�RXRY, and

rMY
� � rMY�RMRY. When these are used with Equations A1–A3,

one obtains estimates of the biased values. Figure 2 was created
by considering a range of values of RM and RX for mediation

models with small, medium, and large effects. To make these
calculation more convenient to carry out, we created an Excel
sheet that can be downloaded (http://sites.google.com/site/
ledgerwoodshrout2011).

Expected Precision of OLS Estimates and Structural
Equation Modeling (SEM) Latent Variable Estimates

For the OLS estimates described by Equations A1–A3, the
asymptotic standard errors12 can be expressed explicitly. For the
estimate of a, the standard error is

Se	â
 � ��1 � �MX
2

n ��M
2

�X
2 .

For Equations A2 and A3, the asymptotic standard errors are
obtained by taking the square root of the diagonal elements of the
matrix

V� b̂
ĉ� � � �1 � RY

2

n �SI
�1�Y

2,

where RY
2 is the squared multiple correlation for Y and SI

�1 is the
inverse of the covariance matrix of the independent variables (M,
X). As the sample size, n, gets larger, the standard errors get
smaller by a factor of 1/�n. The standard errors are also affected by
the degree of correlation among the variables. Most notably, the

12 Because we will be comparing the OLS standard error to the standard
error of the SEM maximum likelihood estimates, we use asymptotic forms.
We assume the variables have population mean 0 and variance 1, but the
standard errors are for unstandardized effects.

(Appendix continues)
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larger the effect a, the larger the correlation of X and M, and the
larger the diagonal of SI

�1, which leads to greater standard errors
for b̂ and ĉ� (see Cohen et al., 2003, p. 86).

Instead of being based on the correlations of three variables—X,
M, and Y—the SEM estimates of the model shown in Figure 3
depend on correlations among nine variables: X1, X2, X3, M1, M2,
M3, Y1, Y2, Y3. Suppose the sample variance–covariance matrix is
called S. It is a nine-by-nine matrix with the variances of the
indicators on the diagonal and the covariances among pairs of
indicators in the off-diagonal. In SEM, multivariate equations are
written to create a fitted version of the variance–covariance ma-
trix, which we call . The fitted covariance matrix depends on the
a, b, and c� parameters from Figure 3 as well as the paths between
each latent variable and its indicators, and the variances of the
residuals. There are 21 parameters in this model that will be
estimated, and statisticians represent them as a list in a vector
called �. Although the nine-by-nine matrix has 45 distinct ele-
ments, the fit depends on the 21 elements in �, leaving 45 � 21 �
24 degrees of freedom to assess the quality of fit. Unlike OLS, the
maximum likelihood (ML) estimation method does not lead to
explicit equations like Equations A1–A3. Instead, SEM programs
use numerical methods to find values of the � estimates that make
 resemble the sample variance–covariance matrix S. According
to Bollen (1989, pp. 134–135), the degree of resemblance is
quantified by the ML-fitting equation

FML � ln|̂| � trace�Ŝ�1] � ln|S| � 9. (A4)

Values of a, b, c�, and the 18 other parameters in � are chosen by
the numerical methods to make Equation A4 as small as possible.
These methods essentially evaluate FML for different trial values of
a, b, c�, and the other parameters, and when there is no improve-
ment for small additional changes, the result is considered to be the
ML estimate. This method of estimation is the default in most
SEM programs.

Like the OLS estimates, the precision of the ML estimates
depends on the sample size and the pattern of associations among
the variables in the model. When the ML estimate is relatively

more precise, the rate of change in FML as a, b, c�, and the other
parameters approach the optimal values is high: Small changes in
the trial estimates are associated with relatively large changes in
FML. When the estimate is less precise, the rate of change of FML

is not strongly related to the final ML values. Statistical theory
(Bollen, 1989, p. 135) states that standard errors can be computed
from the second derivative of FML with respect to the list of
parameters being estimated. The second derivatives provide a
measure of how quickly FML would change as the estimates of the
parameters move slightly from the values that minimize Equation
A4. In practice, the numerical algorithm that finds the ML esti-
mates can also provide an estimate of the second derivatives of
FML near the ML solution. The asymptotic variance–covariance
matrix of the � estimates is given by

Var	�̂
 � �2

n��E��2FML

�������
�1

. (A5)

The second derivatives in this equation are conceived to be
constant once a model such as that in Figure 3 is specified.
However, the numerical methods for estimating it are influenced
by sampling variation. One way to obtain values for the matrix that
are not much affected by sampling variation is to use simulation
provisions in SEM software such as Mplus (Muthén & Muthén,
2010) to create a very large simulated data set that follows the
model in Figure 3. The standard errors computed by extremely
large data sets will not be much affected by sampling error, and
then Equation A5 can be used to rescale the obtained standard
error to smaller sample sizes of interest. For example, if N �
10,000 for a large simulated data set, but one wishes to know the
asymptotic standard error of n � 100, then one multiplies the result
from Equation A5 by N/n � 10,000/100 � 100. This method was
used to compute the asymptotic standard errors shown in Figure 4.
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